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Abstract
Theoretical investigation of thermodynamic properties of an electrically modulated graphene
monolayer in the presence of a perpendicular magnetic field B is presented. This work is aimed
at determining the modulation-induced effects on the thermodynamic properties of graphene.
The results obtained are compared with those of conventional two-dimensional electron gas
(2DEG) systems realized in semiconductor heterostructures. The one-dimensional periodic
potential, due to electric modulation lifts the degeneracy of the Landau levels and converts them
into bands whose width oscillates as a function of B . We find commensurability (Weiss)
oscillations for small values of B and de Haas–van Alphen (dHvA)-type oscillations at larger
values of B . We find that the modulation-induced effects on the thermodynamic properties are
enhanced and less damped with temperature in graphene compared with conventional 2DEG
systems. Furthermore, we have derived analytic asymptotic expressions which allow us to
determine the critical temperature and critical magnetic field for the damping of magnetic
oscillations in the thermodynamic quantities considered here.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Monolayer graphene is a two-dimensional (2D) honeycomb
lattice of carbon atoms. Its experimental realization
has opened up new horizons in the field of condensed
matter physics and materials science. Unique electronic
properties of graphene make it substantially different from
conventional two-dimensional electron gas (2DEG) systems
realized in semiconductor heterostructures. The quasiparticles
in graphene at low energies have a linear dispersion relation
εk = h̄vFk with a characteristic velocity of vF = 106 m s−1 [1].
These quasiparticles, called massless Dirac fermions, can
be treated as electrons with zero mass. The fact that
charge carriers in graphene can be described by a Dirac-
like equation, rather than the usual Schrödinger equation for
nonrelativistic quantum particles in conventional 2DEG, can
be seen as a consequence of graphene’s crystal structure.

3 Author to whom any correspondence should be addressed.

This consists of two equivalent carbon sublattices. Quantum-
mechanical hopping between the sublattices leads to the
formation of two energy bands, and their interaction near
the Brillouin zone yields the conical energy spectrum. In
contrast, electrons in conventional 2DEG systems are confined
in one dimension but are free in the other two, resulting
in parabolic dispersion in two dimensions. As a result of
this difference in the energy spectrum, one can expect that
quasiparticles in graphene behave differently from those in
conventional 2DEG systems. The zero mass property of charge
carriers in graphene along with charge conjugation symmetry
results in many unusual transport phenomena such as the
anomalous quantum Hall effect, Klein tunneling and a non-
zero Berry phase [2–5]. Currently, there is great interest in
exploring the electronic properties of graphene in the presence
of nonuniform potentials, such as in p–n junctions [6], as well
as in periodic potentials. The effects of a periodic potential
on the electron properties of 2D systems have been the subject
of continued interest, where electrical modulation of the 2D
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system can be carried out by depositing an array of parallel
metallic strips on the surface or through two interfering laser
beams [7]. More recently in graphene, electrostatic [8] and
magnetic [9] periodic potentials have been shown to modulate
its electronic structure in unique ways, leading to fascinating
physics and possible applications. Periodic potentials are
induced in graphene by interaction with a substrate [10] or
controlled adatom deposition [11]. In this context, it was
recently shown [10] that epitaxial graphene on an Ir(111)
substrate induces a weak periodic potential in graphene. In
addition, it was shown that periodic ripples in suspended
graphene also induce a periodic potential in a perpendicular
electric field [12]. Epitaxial growth of graphene on top of a
prepatterned substrate is also a possible route to modulation
of the potential experienced by the electrons. In this work,
we complement these recent studies to discuss the effects of
a weak electric modulation on the thermodynamic properties
of a graphene monolayer subjected to an external magnetic
field perpendicular to the graphene plane. Electric modulation,
in addition to the applied magnetic field, introduces two
new length scales in the system, a period of modulation and
cyclotron radius at the Fermi energy, the commensurability
of these length scales giving rise to interesting physical
effects on the thermodynamic response. It was found
earlier that commensurability (Weiss) oscillations [7] appear
in magnetoresistance when conventional 2DEG is subjected
to artificially created periodic potentials (either electric or
magnetic). These oscillations were found to be the direct
consequence of the commensurability of the two length scales
mentioned above: the cyclotron orbit radius Rc = √

2πnel2

(where ne is the density of electrons and l = √
h̄/eB is the

magnetic length) and the period of modulation a. In this work,
we not only investigate the effects of electrical modulation
on the thermodynamic properties of a graphene monolayer
but also compare our results with the previously obtained
results for conventional 2DEG systems found in semiconductor
heterostructures [13, 14].

This paper is arranged as follows. In section 2, we give the
formulation of the problem. Calculation of the thermodynamic
quantities is given in section 3 and numerical results are
discussed in section 4. Numerical results are supported by
analytical results derived in the asymptotic limit; these are
presented in section 5.

2. Formulation

We consider a graphene monolayer in the xy plane subjected to
a magnetic field B along the z direction. In the Landau gauge,
the unperturbed single-particle Dirac-like Hamiltonian may be
written as [3–5, 12]

Ho = vFσ · (−ih̄∇ + eA). (1)

Here, σ = {σx , σy} are the Pauli matrices and vF = 106 m s−1

characterizes the electron velocity with A = (0, Bx, 0)

the vector potential. The normalized eigenfunctions of the
Hamiltonian given in equation (1) are

�n,ky = eiky y

√
2L yl

( −iφn−1[(x + xo)/ l]
φn[(x + xo)/ l]

)
, (2)

where φn = exp(−x2/2)√
2nn!√π

Hn(x), Hn(x) are the Hermite

polynomials, L y is the normalization length in the y direction,
n is an integer corresponding to the Landau level index and
xo = kyl2 is the center of the cyclotron orbit. The energy
eigenvalues are

εn = √
nh̄ωg, (3)

where ωg = vF

√
2eB

h̄ is the cyclotron frequency of the Dirac

electrons in graphene. In order to investigate the effects of
modulation, we express the Hamiltonian in the presence of
modulation as

H = Ho + U(x). (4)

Here, U(x) is the one-dimensional periodic modulation
potential along the x axis and is given by

U(x) = Vo cos K x . (5)

K = 2π
a , a is the period of modulation and Vo is the constant

modulation amplitude. To account for weak modulation we
take Vo to be an order of magnitude smaller than the Fermi
energy εF = vFh̄kF, where kF = √

2πne is the magnitude
of the Fermi wavevector with ne the density of electrons.
This allows us to apply standard first-order perturbation
theory to determine the energy eigenvalues in the presence of
modulation. The first-order energy correction is

εn,xo = εn + |Vn| cos K xo. (6)

Here, |Vn| = Vo
2 exp(− u

2 )[Ln(u) + Ln−1(u)], u = K 2l2

2 ,
and Ln(u) and Ln−1(u) are Laguerre polynomials. It is
important to mention that we have taken the Fermi level in this
system to be upshifted from the Dirac point, which indicates
that this model relates to n-doped graphene. For undoped
graphene, the Fermi level will be at the Dirac point and the
density of electrons in the conduction band in turn will be
zero. However, real graphene samples are usually doped or can
easily be doped by different methods [19]. To carry over the
calculation performed below to p-doped graphene, where the
Fermi energy is downshifted from the Dirac point, all we have
to do is substitute −ε for ε, −ωg for ωg and the Fermi Dirac
distribution function of holes, 1 − f (ε), for that of electrons,
f (ε), in the expressions given below. Both the density of
states, D(ε), and the Helmholtz free energy, F , expressions
turn out to be the same as that of the n-type system. Therefore,
our results are valid for p-doped graphene as well.

Although similar features in the energy spectrum have
also been found in the 2DEG system there are substantial
differences between the two spectra. The Landau level
spectrum of Dirac electrons depends on the square root of
both the magnetic field B and the Landau band index n
against linear dependence in the case of standard electrons in
conventional 2DEG. The energy eigenvalues in the presence
of modulation given by equation (6) contain a term which is
a linear combination of two successive Laguerre polynomials
with indices n and n − 1, whereas standard electrons in 2DEG
obey a relation containing a single Laguerre polynomial with
index n.

2
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We find that the modulation potential lifts the degeneracy
of the Landau levels and broadens the formerly sharp levels
into electric Landau bands. Further, electric-modulation-
induced broadening of the energy spectrum is nonuniform. The
Landau bandwidth Vn oscillates as a function of n since Ln(u)

is an oscillatory function of the index n. Landau bands become
flat for those values of B for which the modulation strength
becomes zero. By putting Vn = 0, one can obtain the flat band
condition:

exp

(
−u

2

)
[Ln(u) + Ln−1(u)] = 0. (7)

Applying the asymptotic expression [15]:

exp

(
−u

2

)
Ln(u) � 1

√
π

√
nu

cos

(
2
√

nu − π

4

)
(8)

with Ln(u) = Ln−1(u), one obtains from equations (7) and (8)
the following condition:

2Rc = a(i − 1/4), i = 1, 2, 3, . . . , (9)

where Rc = kFl2 is the classical cyclotron orbit. From
equations (6) and (8) it can be observed that, in the large n
limit, electron bandwidth oscillates sinusoidally and is periodic
in 1/B , for fixed values of n and a. When n is small, the
bandwidth still oscillates, but the condition (9) no longer holds
because neither equation (8) nor Ln(u) � Ln−1(u) is valid.
Interestingly, for low values of B , when many Landau levels
are filled, both the graphene and 2DEG systems have the same
flat band condition [13, 14].

It is well known that, in the absence of modulation, the
density of states (DOS) consists of a series of delta functions at
energies equal to εn . The addition of a weak periodic electric
modulation, however, modifies the former delta functions
leading to DOS broadening. The density of states D(ε) is given
by [16]

D(ε)= A

πl2

∑

n,xo

δ(ε − εn,xo)=
A

πl2

∑

n

θ(|Vn|−|ε−εn|)√|Vn|2−(ε − εn)2
,

(10)
where θ(x) is the Heaviside unit step function and A is the area
of the sample.

Before we begin the calculation of equilibrium thermody-
namic quantities, it is necessary to discuss the regime of va-
lidity of the perturbation theory presented above. For large
n the level spacing given by equation (3) goes as ωg(

√
n −√

(n − 1)) −→ ωg
1

2
√

n
and the width of the nth level goes

as 2ωon1/2, apart from the modulation. There is therefore a
value of n at which the width becomes equal to the spacing and
the perturbation theory is no longer valid. This occurs when
nmax = 1

16V 4
o
π2u(h̄ωg)

4 = π4

2h̄a2V 4
o
v4

FeB . For a fixed electron
density and the period of modulation this suggests the mini-
mum value for the magnetic field B below which it is necessary
to carry out a more sophisticated analysis. Note that this argu-
ment applies to any other calculation which treats the modula-
tion as a perturbation. Furthermore, dispersion of charge carri-
ers in graphene is found to be essentially linear within ±1 eV of
the Fermi energy [1–5]. Since, in this work, we limit ourselves
to low temperatures and weak magnetic fields as well as weak
modulation, the assumption of linear dispersion is expected to
hold.

3. Equilibrium thermodynamic quantities

In this section, we determine the electronic contribution
to the equilibrium thermodynamic properties of a graphene
monolayer subjected to a perpendicular magnetic field and
weak electric modulation. To facilitate comparison with
results for a 2DEG, we compute the following thermodynamic
quantities: chemical potential, Helmholtz free energy,
electronic specific heat, orbital magnetization and orbital
magnetic susceptibility.

The magnetic field (B)-and temperature (T )-dependent
chemical potential μ ≡ μ(B, T ) of a system can be
determined by inverting the following relation:

N =
∫ ∞

0
D(ε) f (ε) dε. (11)

Here, the Fermi Dirac distribution function f (ε) =
[exp(

ε−μ

kB T ) + 1]−1, kB is the Boltzmann constant and N is the
total number of electrons. The total internal energy U is given
as

U =
∫ ∞

0
εD(ε) f (ε) dε. (12)

We observe that μ(B, T ) is affected by changes in D(ε).
Substituting equation (10) into equation (11), we obtain

N = A

π2l2

∞∑

n=0

∫ 1

−1

dx√
1 − x2

(1 + αn exp[zn x])−1. (13)

Here x = |ε−εn |
|Fn | , αn = exp[ εn−μ

kB T ] and zn = |Vn|/(kBT ).
Equation (13) can be applied to both modulated and
unmodulated systems (zn ≡ 0). For fixed electron
concentration ne = N/A the above equation gives
μ(B, T ) only implicitly and it cannot be decoupled explicitly.
Therefore, we have solved equation (13) numerically to obtain
chemical potential μ(B, T ). Once the chemical potential and
the density of states are known, the free energy F of the system
can be calculated. From there on the thermodynamic properties
of the system can be obtained from the free energy by taking
the appropriate derivatives. For a system of non-interacting
fermions, the Helmholtz free energy is given by [17]

F = μN − kBT
∫ ∞

0
D(ε) ln

[
1 + exp

(
μ − ε

kBT

)]
dε. (14)

The density of states D(ε) is the central quantity in the above
expression. The expression for D(ε) in graphene is different
from that in conventional 2DEG due to the difference in the
energy spectrum in the two cases. This difference will be
reflected in the thermodynamic properties of the two systems.
The free energy for an electrically modulated graphene system
is given as

F = μN − kBT
A

π2l2

∞∑

n=0

∫ 1

−1

dx√
1 − x2

× ln[1 + α−1
n exp(−zn x)]. (15)

From equation (15), we calculate the electronic contribution
to the entropy S = (U − F)/T and the electronic specific

3
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Figure 1. The change in the chemical potential (�μ) due to 1D
modulation versus magnetic field B at two different temperatures 2 K
(solid curve) and 6 K (broken curve).

heat C = −T ( ∂2 F
∂T 2 )A,N . The orbital motion of the electrons

in the presence of an external magnetic field gives rise to
the electronic contribution to the orbital magnetization M =
−( ∂ F

∂ B )A,N as well as orbital magnetic susceptibility χ =
−(∂2 F/∂ B2)A,N . These quantities are numerically evaluated
and the results presented in section 4.

4. Results and discussion

Numerical results for thermodynamic properties of a graphene
monolayer subjected to electrical modulation and an external
magnetic field are presented. The focus, here, is on the
modulation-induced changes in the thermodynamic properties.
To facilitate comparison with a 2DEG system we have chosen
the following parameters: ne = N/A = 3.16 × 1015 m−2

and a = 382 nm. The strength of the electrical modulation
is taken to be Vo = 1 meV. These are the same parameters
considered for a 2DEG in [13, 14]. Modulation-induced
effects on thermodynamic quantities can be highlighted by
calculating the difference between the modulated case and the
unmodulated case in each system.

In figures 1–5, we have plotted the change in various
thermodynamic properties due to electric modulation at
temperatures of T = 2 K (solid curve) and T = 6 K (broken
curve).

In figure 1, we have plotted the change in chemical
potential versus magnetic field at temperatures 2 K (solid)
and 6 K (broken). For a conventional 2DEG system, for
B < 0.3 T, oscillations depend very weakly on temperature,
which is a clear signature of Weiss-type oscillations whereas,
for B > 0.3 T, the oscillations depend strongly on temperature,
in particular they die out at 6 K, a clear signature of dHvA-
type oscillations. Furthermore, the zeros in the chemical
potential are in close agreement with those predicted by the
flat band condition equation (9). We have discussed this point
from the perspective of the bandwidth in the discussion of
figure 2 given below. In graphene, the value of B defining the

Figure 2. The change in the free energy (−�F) versus magnetic
field B at two different temperatures 2 K (solid) and 6 K (broken).
The y axis has been scaled using Fo = NεF/2 so that it appear
dimensionless.

Figure 3. The change in the orbital magnetization (�M) versus
magnetic field B at two different temperatures 2 K (solid) and 6 K
(broken). The y axis has been scaled using Mo = NμB so that it
appear dimensionless.

boundary between the two oscillatory phenomena is quite low
(it lies somewhere between 0.1 and 0.15 T). For smaller values
of B , Weiss-type oscillations are present and the amplitude
of the oscillations remains essentially the same at different
temperatures. For larger values of B , the familiar dHvA-
type oscillations are present, with the amplitude of oscillations
reduced considerably at comparatively higher temperatures.
dHvA oscillations are found to start at a lower magnetic
field in graphene compared to 2DEG. This difference can be
attributed to the large cyclotron gap in graphene compared
to the cyclotron gap of conventional 2DEG systems since the
condition h̄ωg � kBT is satisfied at lower magnetic fields in
graphene compared to a 2DEG. Furthermore, in a conventional
2DEG system oscillations completely die out at 6 K whereas
they persist in graphene at this temperature. In section 4
of the present paper, we have derived analytic asymptotic
expressions for the free energy in order to obtain temperature
scales for both dHvA-type and Weiss-type oscillations. Our

4
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Figure 4. The change in the magnetic susceptibility (�χ) versus
magnetic field B at two different temperatures 2 K (solid) and 6 K
(broken). The y axis has been scaled using χo = NμB/B so that it
appears dimensionless.

findings show that for a graphene system comparatively higher
temperatures are required for the damping of both the dHvA-
and Weiss-type oscillations. This result holds for all the
thermodynamic quantities considered here.

The free energy for the two systems is shown in figure 2.
To make the y axis dimensionless, the free energy has
been scaled using Fo = 1

2 NεF. It can be seen that at
small values of B modulation induces weakly temperature-
dependent Weiss-type oscillations occur, with zeros occurring
at their respective flat band conditions. To illustrate this
point, we consider the bandwidth of the nth Landau band
which is given by Vo exp[−u/2]|Ln(u) + Ln−1(u)|. For
the modulation-induced effects considered here the magnetic
field is small and in order to make an estimate of the
minima of the bandwidth we take the large n limit of the
Laguerre polynomial term such that exp[−u/2]Ln(u) may
be approximated by (π2nu)−1/4 cos(2

√
nu − π/4). If the

bandwidth is plotted in both cases, for the exact result and the
asymptotic limit, minima of the bandwidth are found at B =
0.086, 0.106, 0.140, 0.184, . . .. Modulation-induced change
in free energy vanishes at B = 0.084, 0.102, 0.130, 0.174, . . .

which shows that the vanishing of the change in free energy
occurs at those values of the magnetic field where the
bandwidth minima occur.

Furthermore, Weiss oscillations are more pronounced in
the graphene system; significantly the amplitude of Weiss
oscillations for the graphene system remains unchanged at
higher temperature, contrary to the 2DEG in which damping
is observed. The familiar dHvA-type oscillations are observed
for higher values of B . As in the case of the chemical potential,
the dHvA-type oscillations start quite early. The first period
for the dHvA-type oscillations starts at B = 0.3 T and extends
up to 0.6 T for the conventional 2DEG system, whereas for
graphene the first period of dHvA oscillations starts at B =
0.175 T and terminates at 0.27 T.

In figures 3 and 4 we have plotted the changes in the
magnetization �M and the susceptibility �χ against the
magnetic field. The change in orbital magnetization and

Figure 5. The change in the specific heat �Cel/Co versus magnetic
field B at two different temperatures 2 K (solid) and 6 K (broken).
The y axis has been scaled using Co = NkB so that it appears
dimensionless.

change in susceptibility has been scaled using Mo = NμB

and χo = NμB/B , respectively, where μB = eh̄v2
F/(2εF) =

5.021 meV T−1 is the effective Bohr magneton in graphene,
such that the y axis in both curves appears dimensionless.
The orbital magnetization considered here is the Landau
diamagnetic contribution. As the magnetic field is applied, the
electron distribution breaks up into a series of Landau levels.
This change in energy with field is equivalent to magnetization
of a system. At low B , Weiss-type oscillations are clearly
visible while, for higher values of B , dHvA oscillations are
present. The Weiss oscillations are weakly dependent on
temperature while the dHvA type are strongly affected. We
observe that dHvA oscillations in �M and �χ are less damped
with temperature in the graphene system than in the 2DEG
system.

In figure 5, we plot the change in the electronic specific
heat capacity against the magnetic field. The y axis has been
scaled using Co = NkB to appear dimensionless. We find
that the amplitude of the Weiss-type oscillations in �Cel

Co
is

not large, which suggests that the modulation-induced effects
on the specific heat are small. We also find that specific
heat at low B is enhanced when the modulation is introduced
compared to the situation without modulation. This occurs
due to the broadening of the Landau levels caused by the
modulation resulting in the contribution of intra-Landau level
thermal excitations to the electronic specific heat in addition to
the contribution from inter-Landau level thermal excitations.
We also observe damping with temperature of the dHvA-type
oscillations at higher B . In order to gain further physical
insight into the results presented above, we analyze asymptotic
expressions of the thermodynamic quantities in section 5.

5. Asymptotic results

In this section we will derive an analytic expression for the
Helmholtz free energy, which is true in the quasi-classical limit
when many Landau bands are filled. To obtain the asymptotic
expression for the Helmholtz free energy it is essential to first
derive an asymptotic expression for the density of states. In the

5



J. Phys.: Condens. Matter 22 (2010) 025503 R Nasir et al

quasi-classical case, an approximate analytical formula for the
density of states is given in the appendix as

D(ε) = A

πl2

ε

(h̄ωg)2

[
1 + 2 cos

(
2πε2

(h̄ωg)2

)

×
{

1 − �ε cos2

(√
2

ε

h̄ωg
Kl − π

4

)}]
, (16)

where

� = V 2 a

l

( √
2

h̄ωg

)3

.

The density of states consists of two parts, with the terms
outside the curly braces being just those corresponding to
the unmodulated case, in the limit of vanishing modulation
potential. The additional modulation contribution to the
density of states depends quadratically on the strength of
modulation through � in equation (16). Substitution of
equation (16) in equation (14) yields

F ≈ μN − A

πl2

kBT

(h̄ωg)2

∫ ∞

0
ε

{
1 + 2 cos

(
2πε2

(h̄ωg)2

)}

× ln

[
1 + exp

(
μ − ε

kBT

)]
dε

+ �
A

πl2

kBT

(h̄ωg)2

∫ ∞

0
ε2 cos

(
2πε2

(h̄ωg)2

)

× cos2

(√
2

ε

h̄ωg
Kl − π

4

)
ln

[
1 + exp

(
μ − ε

kBT

)]
dε.

(17)

The first two terms on the right-hand side correspond to the
unmodulated free energy Fu while the third term gives the
modulation contribution to the Helmholtz free energy Fmod ≡
�F . Firstly, we consider Fu:

Fu = μN − A

πl2

kBT

(h̄ωg)2

∫ ∞

0
ε

{
1 + 2 cos

(
2πε2

(h̄ωg)2

)}

× ln

[
1 + exp

(
μ − ε

kBT

)]
dε. (18)

Setting (ε − μ)/kBT = 2θ . At low temperatures, such that
μ coincides with the Fermi energy εF and εF/kBT � 1, the
above equation can be expressed as

Fu ≈ μN − A

πl2

2(kBT )2εF

(h̄ωg)2

×
∫ ∞

−εF/2kBT
ln[1 + exp(−2θ)] dθ

− A

πl2

4(kBT )2εF

(h̄ωg)2

∫ ∞

−εF/2kB T
cos

(
2πε2

F

(h̄ωg)2
+ 8πkBT εF

(h̄ωg)2
θ

)

× ln[1 + exp(−2θ)] dθ. (19)

The second integral in the above equation is an integral of the
type

I (α, β; θo) =
∫ ∞

−θo

cos(αθ + β) ln[1 + exp(−2θ)] dθ,

where α = 8πkBT εF
(h̄ωg)2 , β = 2πε2

F
(h̄ωg)2 and θo = εF/2kBT � 1.

This integral can be performed analytically in the limit of large

θo. Twice integrating by parts, followed by replacement of the
lower limit of integration by −∞, since (θo � 1), leads to

I (α, β; θo) ≈ −2θo

α
sin(β − αθo) + 2

α2
cos(β − αθo)

− 1

α2

∫ ∞

−∞
cos(αθ + β)

cosh2(θ)
dθ.

Using the following identity [15]:

∫ ∞

0

cos(αθ + β)

cosh2(γ θ)
dθ = πα

2γ 2 sinh( πα
2γ

)

we obtain
∫ ∞

−∞
cos(αθ + β)

cosh2(θ)
dθ = πα cos(β)

sinh( πα
2 )

with the result

Fu ≈ μN − A

πl2

2(kBT )2εF

(h̄ωg)2

×
∫ ∞

−εF/2kBT
ln[1 + exp(−2θ)] dθ

− A

πl2

εF

2π
sin

(
2πε2

F

(h̄ωg)2

)

− A

πl2

(h̄ωg)
2

8π2εF
cos

(
2πε2

F

(h̄ωg)2

)

+ A

2πl2

kBT

sinh(T/T dHvA
g )

cos

(
2πε2

F

(h̄ωg)2

)
. (20)

T dHvA
g = (h̄ωg)

2/4π2kBεF, in the above expression, defines
the critical temperature for dHvA-type oscillations in graphene
and determines the amplitude of these oscillations at small
magnetic fields. The point worth mentioning is that the critical
temperature T dHvA

2DEG = h̄ωc/2π2kB for dHvA oscillations in
the case of conventional 2DEG [13] is lower than the critical
temperature for graphene. Further, the ratio is found to be
independent of the external magnetic field such that

T dHvA
g

T dHvA
2DEG

= vFme

h̄
√

2πne
≈ 4. (21)

The comparatively higher value of critical temperature found
in graphene can be attributed to the larger cyclotron gap h̄ωg,
characteristic of Dirac fermions in graphene. Moreover, the
effective mass term in T dHvA

2DEG is analogous to the εF/v
2
F (similar

to the E = m∗c2) term in T dHvA
g , which also confirms the

relativistic nature of Dirac fermions in graphene. Moreover, we
find in equation (20) a pure oscillatory dHvA-type contribution
to Fu due to the magnetic-field-dependent sine and cosine
terms is present. If we compare the above result with the results
for conventional 2DEG systems [13], we find that additional
temperature-independent and magnetic-field-dependent sine
and cosine terms are present in the expression for graphene.
Furthermore, at higher temperatures, the last term on the
right-hand side of equation (20) decays exponentially whereas
the additional magnetic-field-dependent sine and cosine terms
persist, contrary to the conventional 2DEG system.

6
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Along the same lines, the second integral on the right-hand
side of equation (17) may be solved for Fmod ≡ �F :

Fmod = �F = �
A

πl2

ε2
F

2π

{
sin

(
2πε2

F

(h̄ωg)2

)

+
(

1 − T/T dHvA
g

sinh(T/T dHvA
g )

)
1

2
cos

(
2πε2

F

(h̄ωg)2

)/
2πε2

F

(h̄ωg)2

}

× cos2

(√
2

εF

h̄ωg
Kl − π

4

)
. (22)

The above expression accounts for the dHvA-type oscillations
in the presence of modulation. At low magnetic fields, the
cosine squared term gives rise to new oscillations: Weiss-
type oscillations, occurring in �F as the amplitude modulation
of the dHvA-type oscillations such that zeros result when
the electric flat band condition is satisfied. The period of
modulation δ is found to be

δ

(√
ne

B

)
= a

2
√

2π

e

h̄
(23)

which is the same as for the conventional 2DEG system.
From equation (22) no temperature scale for the Weiss-type
oscillations is obtained. However, if we solve the second
integral of equation (17) for Fmod by replacing all the energy
terms ε by the Fermi energy εF, except the one which is
included in the last cosine function (where small energy
changes can influence the damping of Weiss-type oscillations),
we find an expression for �F containing the temperature scale
for the Weiss-type oscillations as well:

Fmod = �F = �
A

πl2
(kBT )2 ε2

F

(h̄ωg)2
cos

(
2πε2

F

(h̄ωg)2

)

×
∫ ∞

−εF/2kBT
ln[1 + exp(−2θ)] dθ

+ �
A

πl2

ε3
F

4
√

2Klh̄ωg

cos

(
2πε2

F

(h̄ωg)2

)

− �
A

πl2

ε2
F

(2
√

2Kl)2
cos

(
2πε2

F

(h̄ωg)2

)

× 1

2

T/T Weiss
g

sinh(T/T Weiss
g )

{
1 + 2 cos2

(√
2

εF

h̄ωg
Kl − π

4

)}
,

(24)

where T Weiss
g = h̄ωg/(2

√
2π KlkB) = h̄ωg

2π2
a

2
√

2lkB
defines the

critical temperature for the damping of Weiss oscillations in
graphene. We can now compare the critical temperature scales
for damping of Weiss oscillations in graphene, T Weiss

g , and
conventional 2DEG systems, T Weiss

2DEG, where electrons obey the
standard parabolic energy spectrum. The critical damping
temperature in a conventional 2DEG system [9] is T Weiss

2DEG =
v

p
FeBa

4π2kB
, where v

p
F = h̄kF/me is the Fermi velocity of electrons

with parabolic energy spectrum and me is the effective mass of
the electron. On comparing the two temperature scales we find
that the damping temperature T Weiss

g for Weiss oscillations in
graphene is higher than T Weiss

2DEG of a 2DEG system. The ratio of
critical temperatures of Weiss oscillations is found to be same

Figure 6. The (sinh(Bo/B))−1 as a function of magnetic field B at
T = 2 K for graphene system (solid curve) and for conventional
2DEG (broken).

as that of dHvA-type oscillations:

T Weiss
g

T Weiss
2DEG

= vF

v
p
F

≈ 4, (25)

which means a comparatively higher temperature is also
required for damping of Weiss-type oscillations in graphene.
This is due to the higher Fermi velocity of Dirac electrons in
graphene compared to standard electrons in 2DEG systems.
From the above discussion, it is evident that both dHvA-
and Weiss-type oscillations are more enhanced in the case
of graphene. The sinh(T/T dHvA

g ) factor in the last term of
equation (20) is the damping factor with the temperature of
dHvA oscillations in graphene. If T/T dHvA

g is replaced by
BdHvA

g /B for graphene and T/T dHvA
2DEG is replaced by BdHvA

2DEG/B
for a 2DEG system, where BdHvA

g = 2π2kFkBT/evF and
BdHvA

2DEG = 2π2kFkBT/evp
F defines the critical magnetic field

for graphene and 2DEG, respectively, then we are able to
determine the amplitude of dHvA oscillations at a given
magnetic field. In figure 6 we have plotted (sinh(Bo/B))−1,
where Bo = BdHvA

g for graphene and Bo = BdHvA
2DEG for 2DEG

systems, respectively, as a function of the magnetic field B
at T = 2 K. The solid curve is for the graphene system
whereas the broken curve is for a conventional 2DEG system.
From the figure it can be seen that the curve for the graphene
system (solid) leaves the zero axis at a magnetic field of 0.12 T
while the curve for the conventional 2DEG system (broken)
becomes non-zero at a magnetic field of 0.35 T, depicting
minimum values of the magnetic field B for the occurrence of
dHvA oscillations for the two systems. These minimum values
of critical magnetic fields are consistent with our numerical
results. From the values of critical temperature and critical
magnetic field Bo, it is clear that conditions favorable for dHvA
oscillations in a conventional 2DEG system persists to smaller
magnetic fields and higher temperatures in graphene.

In conclusion, we have presented a study of the
thermodynamic properties of a graphene monolayer subjected
to a weak electric modulation in the presence of a magnetic
field. The results obtained are compared with those of
a conventional 2DEG system realized in semiconductor

7



J. Phys.: Condens. Matter 22 (2010) 025503 R Nasir et al

heterostructures. As a result of the commensurability of two
characteristic length scales in the system, period of modulation
and cyclotron orbit radius, commensurability oscillations
(Weiss type) and dHvA-type oscillations are reflected in all the
thermodynamic quantities under consideration in this work for
the two systems. However, these effects are more pronounced
in a graphene system in the sense that the oscillations in the
thermodynamic quantities are more robust against temperature
as well as having a higher amplitude than in a conventional
2DEG system. This difference arises due to the different nature
of the quasiparticles (Dirac electrons and standard electrons)
in the two systems with the result that the energy spectrum for
the quasiparticles in the two systems as well as their Fermi
velocities are different. On the basis of analytic asymptotic
expressions, we are able to determine the critical temperature
and critical magnetic field for damping of magnetic oscillations
in the thermodynamic properties of an electrically modulated
graphene monolayer.

Appendix

Here, we derive the asymptotic expression for the density of
states appearing as equation (16) in this paper. We consider
a graphene monolayer subjected to a uniform quantizing
magnetic field B = Bẑ in the presence of an additional weak
periodic modulation potential. The energy spectrum in the
quasi-classical approximation when many Landau bands are
filled may be written as

εn,xo = √
nh̄ωg + G(ε) cos K xo (26)

where

G(ε) = V0π
−1/2

(
1

2
K 2l2 ε

h̄ωg

)−1/4

cos

(√
2Kl

ε

h̄ωg
− π

4

)
.

To obtain a more general result, which will lead to the result
that we require as a limiting case, we consider impurity-
broadened Landau levels. The self-energy may be expressed
as

�−(ε) = �2
o

∑

n

∫ a

0

dxo

a

1

ε − εn,xo − �−(ε)
. (27)

�o is the broadening of the levels due to the presence of
impurities. The density of states is related to the self-energy
through

D(ε) = Im

[
�−(ε)

π2l2�2
o

]
. (28)

The residue theorem has been used to sum the series [18]:∑∞
−∞ f (n) = −{Sum of residues ofπ(cot πn) f (n) at all

poles of f (n)}. Here f (n) = ∑∞
−∞

b
c−d

√
n

with b = �2
o ,

c = ε − �−(ε) − G(ε) cos K xo and d = h̄ωg. The f (n) has
a pole at c2/d2 and a residue of (π(cot πn) f (n)) at the pole
is −2bc

d2 π cot( πc2

d2 ). Hence
∑∞

−∞ f (n) = 2bc
d2 π cot( πc2

d2 ) and we
get

�−(ε) =
∫ a

0

dxo

a

2π�2
o(ε − �−(ε) − G(ε) cos K xo)

(h̄ωg)2

× cot

(
π(ε − �−(ε) − G(ε) cos K xo)

2

(h̄ωg)2

)
(29)

�−(ε) ≈ 2π�2
oε

(h̄ωg)2

∫ a

0

dxo

a
cot

(
πε

(h̄ωg)2
[ε − 2{�−(ε)

+ G(ε) cos(K xo)}]
)

. (30)

Separating �−(ε) into real and imaginary parts:

�−(ε) = �(ε) + i
�(ε)

2
.

Equation (27) takes the form

�(ε) + i
�(ε)

2
= 2π�2

oε

(h̄ωg)2

∫ a

0

dxo

a

sin u + i sinh v

cosh v − cos u
(31)

where

u = 2πε

(h̄ωg)2
[ε − 2(�(ε) + G(ε) cos(K xo))]

v = 2πε

(h̄ωg)2
�(ε).

(32)

In the case of large collision broadening, π� � h̄ωg, we can
expand with respect to the small quantity exp(−v) and solve
equation (31) by iteration. Up to first order, we obtain

�(ε)

2
= 2π�2

oε

(h̄ωg)2

[
1 + 2 exp

[
−4π2ε2�2

o

(h̄ωg)4

]
cos

(
2πε2

(h̄ωg)2

)

×
{

1 − �ε cos2

(√
2

ε

h̄ωg
Kl − π

4

)}]
(33)

where

� = V 2 a

l

( √
2

h̄ωg

)3

.

Using equation (33) in equation (28), an expression for the
density of states may be obtained:

D(ε) = A

πl2

2ε

(h̄ωg)2

[
1 + 2 exp

[
−4π2ε2�2

o

(h̄ωg)4

]
cos

(
2πε2

(h̄ωg)2

)

×
{

1 − �ε cos2

(√
2

ε

h̄ωg
Kl − π

4

)}]
. (34)

In the limit of vanishing impurity potential, considered in this
work, we obtain

D(ε) = A

πl2

ε

(h̄ωg)2

[
1 + 2 cos

(
2πε2

(h̄ωg)2

)

×
{

1 − �ε cos2

(√
2

ε

h̄ωg
Kl − π

4

)}]
. (35)
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